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Abstract

In this paper we describe a modality to transform a variational inequality in infinite dimension into a
problem in finite dimension. We use this theoretical concept for a concrete problem of elasto-plasticity
for a simple domain. We use a Math-lab version to programming the calculus of triples integrals witch
appear in finite element procedures.
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Introduction

The mathematical models of science and engineering mainly take the form of differential
equations with constraints. Usually this kind of problems is transformed in variational inequality
problem. To use mathematical models on a computer we need to develop numerical methods. In
this article we present a modality to transform a variational inequality in infinite dimension into
a problem in finite dimension using the finite element method (FEM).

The FEM is used by many authors for finding numerical solution of partial differential
equations with boundary conditions transformed into variational problem. We obtained
variational inequality when the partial differential equation appears with inequality constraints.
We don’t discuss in this article about the conditions of existence and uniqueness of solutions.
We find in [4] and [6] a general discussion about the existence and uniqueness for variational
problem and optimization algorithms. Such problems are solved numerically using the FEM by
many authors like Cocu M.,Pratt E , Simo J.C, Glowinsky R Lions,J.L. Tremolieres R .

In [2] the author Sanda Cleja Tigoiu obtain the variational inequalities for an elasto-plastic
model characterized by an initial anisotropy using the constitutive framework of materials with
relaxed configurations and internal variables. Another author who transforms elasto-plastic
problems into variational inequalities is J.C.Simo.In [8] he develops numerical models for
classical plasticity and for multiplicative plasticity.

In this article we use a simpler constitutive model with infinitesimal deformation and isotropic
hardening. The material solid is isotropic (the comportment is the same in all directions) and we
use the Mises yield condition who is unaffected by a superposition of an arbitrary hydrostatic
pressure. The variational inequality who describes the comportment of the body at a moment of
time fixed is writing without the demonstration. The goal is to obtain the problem in finite
dimension using the shape functions associated with a simple triangulation.



44 Lidia lancu

Interne Approximation
Let V' be a Hilbert space, (-,) the inner scalar on V' <V and |||| the norm induced.

Definition 1. a: V' xV — R is coercive if exists & >0 ,a(v,v) > a"v”2 Yvel.

Let be a:V xV — R a bi-linear, continuous, symmetric and coercive form and f:V — R
linear application .We introduce the functional:

J:V—)R,J(v)zéa(v,v)—f(v). €))

Let be K aconvex and closed set, K < V.

Proposition 1. If a:V xV — R is a bi-linear, continuous symmetric and coercive ,K is a
convex , closed set K <V and f:V — R a linear application then the variational inequality
problem:

(P)Find uekK:a(u,v-—u)= f(v—u)vve K 2
is equivalent with the problem of minimization:
(P2)Find uekK,Ju)<J(v)Vvek. 3)
Definition . A family V, of Hilbert spaces with finite dimension is named interne
approximation for V' if:
Vh>0,V, cV @)
and exists a space V densein V :
Vvef,ﬂvhth,vh—)v,h—)Q ®)

Definition 3. A family of sets K, is named interne approximation for K if all the follows is

true: K, is convex and closed , K, <V,
VvekK,Iv, €K, v, >v,h >0 (6)
and:

if v,eK,v, >v weak inV then veK . (7)

Using the interne approximations K, for K and V, for V' we obtain the problem in finite
dimension:

(P3)Find u, €K, :a(u,,v-—u,)= f(v-u,)VveK,. (8)
The following theorem describes the hypothesis that is necessaries for u, —> u .

Theorem 1. Let be K, an interne approximation for K and ¥V, an interne approximation for

V .Let be a:VxV —>R a bi-linear, continuous symmetric and coercive form and
f:V = R alinear application .If u is the solution of problem (P1) and u, is the solution of

problem (P3) then u, - u in V'
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The demonstration of this theorem can be found in [6].
We consider a domain Q  R? with a sufficiently regular boundary T".

If V=H"(Q) or ¥V =L*(Q) then an interne approximation for ¥ is obtained using the finite
element method described in the following:

A triangulation of Q is obtained by subdividing Q intoaset 7, ={E|,E,,...E, }.

The polyhedrons E,E,,...,E, are named the reels elements of triangulation and satisfied the

following conditions:
Q=UE,
int(E,) = ®,Vie{l2,. ,m} )]
Int(E;) Nint(E ;) = D, Vi # j

andif F'=E, NE, then F isa common face ,vertex or edge.

We introduce the mesh parameter # = max(meas(E,)),i € {1,2,..,m} .

The most used polyhedron is: for d=2: triangles or parallelograms ;for d=3: thetraedres or
parallelepipeds. We consider that the each reel element E can be obtained using a reference

element E and an invertible ,affine transformation 7 I

E=T,(E).T,(%5.5) = (B, - (5. 2) +b,)’ (10)
with B, an invertible matrix.
In this article we use the reference element [0,1]¢ named d-unity cube.

Let be (), the linear space of polynomials functions with grade 1 in each variables .The

dimension of this space is:

dim(Q,) = (I +1)". (11)
We use the following approximation for ¥ = H'(Q):
V, =V =y, eC'@)v,|;°T;' €QVE €T, (12)
named the space of parallelepiped finite element.
The following proposition assures the inclusion:
vV, c H'(Q). (13)

The demonstration is not presented in this work.
Proposition 2. Let be Qc R’ an open set and 7, a triangulation for €2.A function
f:Q — R is in the space H'(Q) if and only if :

a)| e H'(E)VE €T,

. (14)
bVF =E, NE,,E,E, € Th,traceF(v| £)= traceF(v|E2)
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Observation 1.F is a common face.
A polynomial function P € Q, is well defined in the reference element E= [0,1] if are
known the values of this in 7 = dim(Q,) = (/ +1)* points named the liberty grades .
For / =1 and d =3 those points are:

4,(0,0,0), 4, (1,0,0), 4,(1,1,0), 4,(0,1,0), 4, (0,0,1), A4, (1,0,1), 4, (1,1,1), A, (0,L1) (15)
the vertices of the cube.
In this case the dimension of the space V, described bellow is equal with the number of all

nodes in triangulation 7, .Let being X, = {N,,N,,..., N} the set of all the nodes of 7,.

Definition 4. The functions ¢,,..,¢, €V, are the shape functions for the triangulation 7}, if:

0.(N,) = 8,90, € {12,... p}. (16)
The shape functions for the reference element can be found in [9]:

Proposition 3. The shape functions for the reference element [0,1]° is:

w,($,1,8) ==(5 =D =D& =1);0,(5,7,8) =c(n=1)(¢ =)
@5(5,17,6) = =6n(¢ —1);0,(¢,7,6) = (¢ =Dn(g = 1)

w5(&,n,¢) = (S =D -1 04(8,n,8) = =5 -1 n
@,(S,1,6) = 6ng s wy(8,1,6) = —(& = Dng
having the following property:
,(4,)=06,Vi,je{l2,.8}. (18)

Let be a real element £ = P,P,P,P,P,P,P,F, € T, having the coordinates P,(x,, y,,z,).

Proposition 4. The invertible affine application that transform the reference element E into the
real element £ = PP,P,P,P,P,P,F, and T, (4,) =P, is:

X, =X X3—X, Xs—x | & X
(TE((S‘Z,U,{)))T= Vo= Vi=Yy Vs=Vi ||tV |- (19)
Z,-2; Z3-2z, Zs—Z \§ Z

Let find now the global shape functions ¢,,9,,..,¢, € V) Fixing a node N, € X, ,exists one

or more real elements E,), E,,,..E, with N, € E,Vje{l,2..,r}.
Proposition S. The shape function ¢, is:

@ OTII_I (x,y,2),(x,y,2z) € Ell’Tll(Ajl) =N,
W;y o T (x,,2),(x,y,2) € E,,T,(4;,,) =N,
o (x,y,z)=y . (20)
@, 0T, (x,9,2),(x,y,2) € E,,, T, (4,) = N,
0,(x,y,2) ¢ E,;Vje{l2,.r}
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with the notation 7;, =T, .
{0,0,,..¢,} isabase for the space V), :
VveVl, V' e Rv(x,y,z) = Zvigol. (x,9,2) (21)

and v' = v(N,) s the value of the function in the points that correspond at the node N, .

An Example of a Variational Inequality Obtained from a Boundary
Elasto-plastic Problem

Let be a orthonormate base{i,,7,,i;} .We consider a solid body ; Qc R’ is the domain

occupied at the moment 7, and €, is the domain occupied at the moment of time ¢.The

properties of the material is the following: material elasto-plastic isotropic homogeneous with
small deformations and isotropic hardening .The constitutive assumption is presented in [1] ,[3]
and can be found in the article “A numerical solution for a problem of elasto-plasticity-small
deformations” .In this article we have only the isotropic hardening ; the internal variable ¢ that
describe the cinematic hardening is null over the entire process. We neglect the body forces.
The following notation will be used: o is the Cauchy stress tensor for small deformations,u is

. . . 1 . .
displacement, Vu is the gradient of u,& = E(Vu +(Vu)") is the tensor of total deformation,
K and G is the constants of linear elasticity, P is a known function, tr& =&, +&,, +&;;,

1 . .
o'=0- 3 (tro)l is the deviator of & .
K is the scalar variable who describe the isotropic hardening, v =u is the velocity,

1
A= W < f > H(F) is the plastic multiplier , £ is the plastic factor.

The equilibrium equation is:
div(o)=0 (22)
and we suppose the following boundary conditions:
o(x,)nl, = g(x,t
(x,0)n[l, = g( ). 3
u(x,t)|F2 =U(x,t)

In (26) the functions f* and U are knownand 0Q =T =T, UL, ,I' N[, =®.

The set of all the points that verifies the yield condition F(o,x) =0 at the moment ¢ is Q7
(the plastic domain) and QF =Q, — Q7 is the elastic domain. Let be:

Vie =1v:Q, > R, = U} (24)

the set of all velocities admissible at the moment of time ¢ and

K={wd):Q, >R xR,weV,,,56>0,6(x)=0VxeQ°}. (25)
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This set is closed and convex. The values of 4, is:
2 :
h, = EP(K)P (x)>0 (26)

and is known. We suppose that o, x,Q,,Q” is known at the moment of time .

The following theorem represents the formulation with variational inequality for the problem
described bellow. The velocity field v and the plastic factor # are the unknown of the problem.

Theorem 2. At every moment of time ¢ the velocity field v and the plastic factor £ satisfy the
following relation:

3G

i [2Gé+(K —= G)(trg)l (Vw—=Vv)dx— j p e " (Vw—=Vv)dx —
(27)
pr(é—ﬂ)h—c(ZGa'-é)dx+é|;/>’(5—ﬂ)[h—c h—lz%a o jdx > rjlg-(w—v)da
for all (w,0) e K .
We use the following notations:
f(W)=_[g-wda, (28)
a(v, B),(w,5)] = j [2Gg+(K——G)(trg)I] (Vw)dx — j ﬂhp—c(;)o (Vw)dx —
e (29)
ij (5)h—c(2GO' - &)dx + ijﬂa(h—c h—zma o de

With this notation we have to solve the variational inequality: find (v, #) € K so that

al(v, ), (w,6) = (v, )] 2 f1(W,8) = (v, B)IV(w,6) € K. (30)
Observation: a is bi-linear and symmetric on V' = (H ' (<, Y x I? (Q))).
We obtain for a the following representation:

ov,/0x ) (Ow,/0x
ov, /oy | | Ow, /0y
ov,/0z | | Ow,/0z
ov,/0x | | ow,/0x
ov,/0y | | Ow, /0y
ov, 10z | | ow, oz
ov,/0x | | Ow; /0Ox
ov,/0y | | Ow, /0y
0v,/0z | | Ow,/ 0z
i) o

al(v, £),(w,0)] = [[[M dx 31)
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The matrix M = M (x, y,z) is not constant but is known at the fixed time ¢.

4 2
M, =My =M, :§G+K;M|5 =My =M =My =M, =M, :K_§G5

My =M, =My =My, =M, =M, =Mg=Mgz=M,; =M, =M :M88:G

M,y=M,, = _TGI,IH(F);MZ,IO =M, =M,y =M, = ~To,H(F);
M6,10 = M10,6 = MS,IO = M10,8 = _TO-£3H(F);M4,10 = M10,4 = M7,10 = M10,7 = (32)
=-To,H(F);
M=M= _TJ;ZH(F);MQ,IO =M, = _TO'3'3H(F);M10,10 =
1 1 3¢ , |,
=—+———0'-0
h. h; P(x)
3G
with 7 =

I Pe) H () the Heaviside function and F' the yield function. M is symmetric.
P(x

Letbe Q, =[0,/]x[0,2L]x[0,c] and the nodes
{N,(0,0,0), N, (7,0,0), N, (/,L,0),N,(0,L,0), Ns(l,2L,0), N, (0,2L,0),
N,(0,2L,c), Ny (l,2L,c),N,(l,L,c),N,,(0,L,c),N,,(0,0,¢),N,(1,0,c)}
of a simple triangulation 7, = {E,,E,} with E, = N N,N,N,N,,N,N,N,, and
E,=N,N,NSN.N,(NyNN,.
For /=1, L=3, c=1 we obtain the following shape functions using a Math-lab program:

hapel(i), (x,y,2) € E
shapel(i), (x,y,z) € "'"ie{l,2,.12} (33)

(x,y,2) = .
#.(%.3.2) {shape?_(l),(x,y,z)eE2

and the vectors shapel,shape?2 are:
shapel =[(-x +1)((1/3)y -1)(z-1), x((1/3)y -1}z -1), - (1/3)xy(z - 1),
(1/3)(x -1y(z-1),0, 0,0,0, (1/3)xyz, 34
173(x + Dyz, (x - D)((1/3)y - 1)z, - x((1/3)y -1)z]
shape2 =[ 0,0, x((1/3)y -2)(z-1), (x + 1)((1/3)y - 2)(z-1),
-x((173)y -1)(z-1), x-1)(1/3)y -1)(z -1),(-x + 1)((1/3)y - 1)z, . (35)
x((1/3)y -1z, -x((1/3)y -2)z, (x -1)((1/3)y - 2)z, 0, 0]

The interne approximation for V' is ¥V, = (Sp{@,,®,,..¢,})* Let be:
v=,v,,v3), B) eV, (w=(w,w,,w;),6) €V,. (36)
Using the shape functions we can write:
V=V AV 0LV, = VIO VY 0

1 12 1 12 37)
Vi=v0 tt Vo =0 .+ B,
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and similar for (w,0).In ¥V, xV, the bi-linear form a became a bi-linear form in the

components:
(V] e VL Vs sV Va e Vi B B2, (W) ey Wi Wl Wi oWy, Wy, 60 ,.,8™7) (38)
with the matrix associated , M depending on the domain €, .
The linear application takes the following form on V, :
JW)=(f1s fa0 f36)- (W11 ) Wllz > W; 200 Wéz ) W; 200 W;Z )T =

=(f1>Sr0 fus )(wll,..,wllz,w;,..,wf,w;,..,wéz .51,..,512)T,. (39)
f37 :f38":f48 =0

The approximation for the convex K is:

_ 1 12 1 12 1 12 1 12 48 i 7] .
b =AW e, W Wy, Wy W W30, 0 ) ER |wj =U,;(N))Vi,N, eI,

_ 4 . (40)
and 6' =0Vi with N, € Q] and 6' =2 0Vi with N, e Q!}
Proposition 6. The problem in finite dimension is:
Find (v, ,.. ,vl V. ,v2 ,v3, ,v3 : B ,,BIZ)GK with the property:
M(Vllrav] nvzz ,V2 9V37 i) 3 nﬂ 9* aﬂlz)
((wll,..,w, ,wz,..,w2 ,w3,..,w3 A L
1 12
_(V]a ,Vl 7v2a nvz 3V3a 3V3 ,,B 9 aﬂ ) )> (41)

(f,,...f48)-((w,,..,wl ,wz,..,w2 ,W3,..,W3 2o, 0!
_(V]la svl 7v25 nvz 3V3s 3V3 ,,B 9 sﬂlz) )

YW o Wi W W wh o wh’ 0., 0 ) e K,
If M is positive definite then the bellow problem is equivalent with the minimization on K, of

the application J: J ((w, 0)) = %a[(w, 9),(w,0)]— f(w,9)).

The dimension used is high: 4p for p numbers of nodes so for solving this problem in finite
dimension we can use optimization algorithms like gradient and projected gradient with the
possibility to make computer programs for this.

But first are necessaries to fix the mathematical cadre and the conditions for existence and
uniqueness of solution and establish the conditions for convergence of algorithms. Such
information can be found in [6] and [4] .Without this complicated discussions exists the
possibility of no convergence of the algorithm or a no convergence of the FEM.
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O aproximatie interna pentru o problema
de inegalitate variationald
Rezumat

In acest articol descriem o modalitate de a transforma o inegalitate variationald in dimensiune infinitd
intr-o problema in dimensiune finita. Utilizam acest concept teoretic pentru o problema de
elasto-plasticitate §i pentru un domeniu simplu. Se utilizeaza un program Matlab pentru a calcula
integralele triple care apar in algoritmul metodei elementului finit.



